

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Specialty Polymeric Membranes. 13. Separation of Benzene/Cyclohexane Mixtures through Poly(Vinylidene Chloride-*co*-Vinyl Chloride)-*graft*-Poly(Butyl Methacrylate) Membranes

Masakazu Yoshikawa^a, Keisuke Tsubouchi^a

^a DEPARTMENT OF POLYMER SCIENCE AND ENGINEERING, KYOTO INSTITUTE OF TECHNOLOGY, MATSUGASAKI, KYOTO, JAPAN

Online publication date: 25 September 2000

To cite this Article Yoshikawa, Masakazu and Tsubouchi, Keisuke(2000) 'Specialty Polymeric Membranes. 13. Separation of Benzene/Cyclohexane Mixtures through Poly(Vinylidene Chloride-*co*-Vinyl Chloride)-*graft*-Poly(Butyl Methacrylate) Membranes', *Separation Science and Technology*, 35: 12, 1863 – 1878

To link to this Article: DOI: 10.1081/SS-100100623

URL: <http://dx.doi.org/10.1081/SS-100100623>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Specialty Polymeric Membranes. 13. Separation of Benzene/Cyclohexane Mixtures through Poly(Vinylidene Chloride-*co*-Vinyl Chloride)-*graft*-Poly(Butyl Methacrylate) Membranes

MASAKAZU YOSHIKAWA* and KEISUKE TSUBOUCHI

DEPARTMENT OF POLYMER SCIENCE AND ENGINEERING

KYOTO INSTITUTE OF TECHNOLOGY

MATSUGASAKI, KYOTO 606-8585, JAPAN

ABSTRACT

Poly(vinylidene chloride-*co*-vinyl chloride)-*graft*-poly(butyl methacrylate), which was prepared by a radical graft polymerization of butyl methacrylate onto poly(vinylidene chloride-*co*-vinyl chloride) and poly(vinylidene chloride-*co*-vinyl chloride), itself was found to be suitable for the membrane materials for the selective separation of benzene from benzene/cyclohexane mixtures in the whole feed composition range. The permeation rate was enhanced by the introduction of poly(butyl methacrylate) onto poly(vinylidene chloride-*co*-vinyl chloride) membrane.

Key Words. Polymeric membranes; Pervaporation; Graft polymerization; Benzene; Cyclohexane

INTRODUCTION

Separation of aromatics/aliphatics mixtures by pervaporation is one of potential applications of pervaporation separation to industry in connection with petroleum refinery, and these kinds of studies have been investigated since 1967 (1, 2). If the membrane shows permselectivity toward aromatics, aromatics-lean retentate is useful for diesel and an aromatic-rich permeate can be used as high octane number gasoline. Based on this, the authors' research

* To whom correspondence should be addressed.

group has been studying novel membrane materials for pervaporation separation of aromatics/aliphatics mixtures. As described previously (2), membrane materials should be chosen from commercially available common polymers or chemically modified common ones without complicated modification reaction, because large volumes of mixtures should be treated by the membrane thus prepared. To this end, poly(vinyl chloride) (2), nylon 6 (3-5), and poly(vinyl alcohol) (6) were adopted as membrane materials, and the pervaporation performances of the membranes from modified polymers and unmodified ones were reported. Poly(vinylidene chloride), like poly(vinyl chloride), is also susceptible to a simple chemical modification of radical graft polymerization (7-9).

In the present article, poly(vinylidene chloride-*co*-vinyl chloride) (PVDC/PVC), which can give a more durable membrane than the homopolymer of poly(vinylidene chloride), was adopted as a parent polymer. Novel membrane materials were prepared by a radical graft polymerization of butyl methacrylate onto parent PVDC/PVC. Pervaporation performances of benzene/cyclohexane mixtures through modified PVDC/PVC and unmodified PVDC/PVC membranes were investigated.

EXPERIMENTAL

Materials

Poly(vinylidene chloride-*co*-vinyl chloride) (PVDC/PVC), in which vinylidene chloride unit mole fraction was determined to be 0.902, was kindly provided by Asahi Chemical Industry Co., Ltd. Butyl methacrylate (BMA) (10), benzene for graft polymerization (11), and hexane (11) were purified before being used. Molybdenum hexacarbonyl was sublimed in vacuum (7). Benzene for pervaporation, cyclohexane, tetrahydrofuran (THF), and tetrahydrofuran-*d*₈ were used without further purification.

Graft Polymerization

Graft polymerization of BMA onto PVDC/PVC was carried out as follows (8, 9): a 300 cm³, three-necked, round-bottom flask equipped with condenser, overhead stirrer, and thermometer was used. Into 50 cm³ of polymerization solvent containing PVDC/PVC powder and a prescribed amount of BMA, 40 cm³ of the same solvent with a prescribed amount of Mo(CO)₆ was added, and the reaction mixture was stirred at 80°C. After 24 hours the reaction mixture was filtered, and the precipitate thus obtained was washed with benzene for 48 hours. After that, the precipitate was filtered off and dried in vacuo. Benzene was used as a solvent for the preparation of PVDCBMA-098, PVDCBMA-155, and PVDCBMA-200, and hexane for that of PVDCBMA-614 and PVD-

CBMA-750, where the final last three numbers in the sample code show the ratio of unit mole of grafted PBMA to that of PVDC/PVC.

Spectroscopic Measurement

IR spectra were taken on a JASCO FT/IR-5300 Fourier Transform Infrared Spectrometer.

¹H-NMR spectra were obtained with a Bruker ARX-500. The spectra were measured at ambient temperature, using a 100 g dm⁻³ tetrahydrofuran-*d*₈ solution with tetramethylsilane (TMS) as an internal standard.

Preparation of Membranes

Membranes were prepared from THF solution. The membranes were prepared as follows: 0.300 g of polymer was dissolved in 5 cm³ of THF. The THF solution thus obtained was poured into a flat laboratory dish (7.0 cm diameter) and the solvent allowed to evaporate at 25°C for 24 hours. The obtained membrane was dried at 50°C for an additional 2 hours. The thickness of the membrane thus obtained was 38–49 μm.

Pervaporation

Permeation of the benzene/cyclohexane mixture was performed by an ordinary pervaporation technique (12). The membrane area in contact with the liquid feed was 17.3 cm². The downstream pressure applied was kept at around 267 Pa (2.0 mmHg). Pervaporation experiments were carried out at a constant temperature of 50°C.

Separation analysis was carried out on a Shimadzu GC-8APT gas chromatograph equipped with a 3.0 m long column packed with polyethylene glycol 6000 (Shimalite TPA).

The separation factor, α , is defined as

$$\alpha = (Y_{\text{benzene}}/Y_{\text{cyclohexane}})/(X_{\text{benzene}}/X_{\text{cyclohexane}})$$

where the Y_i s are the weight fractions in the permeate and X_i s are those in the feed.

Solubility Measurement

Solubility selectivities of PVDCBMA-200 and PVDC/PVC membranes were measured as described previously (13). The solubility selectivity, S_S , is defined as

$$S_S = (Z_{\text{benzene}}/Z_{\text{cyclohexane}})/(X_{\text{benzene}}/X_{\text{cyclohexane}})$$

where Z_i s are the weight fractions in the membrane and X_i s are those in the solution.

RESULTS AND DISCUSSION

Radical Graft Polymerization

The introduction of BMA onto PVDC/PVC was confirmed by IR and $^1\text{H-NMR}$ spectra of graft polymers. An example of IR spectra is shown in Fig. 1. In the IR spectrum a new absorption peak at 1725 cm^{-1} , which is assigned to the $\text{C}=\text{O}$ stretching band of PBMA, can be detected. The existence of PBMA in PVDC/PVC was also confirmed by $^1\text{H-NMR}$ measurement. The $^1\text{H-NMR}$ spectrum of PVDCBMA-200 is shown in Fig. 2. The signal assigned to methyl protons (h) in PBMA is newly observed at around 1.0 ppm and methylene protons (b) in butyl moiety at around 4.0 ppm. The intensity of methylene protons (b, c and d) and the area of methyl protons (h) led to a (PBMA)/(PVDC/PVC) ratio of 0.200. The results of graft polymerization are summarized in Table 1. In the sample code the final three numbers show the ratio of unit mole of grafted PBMA to that of PVDC/PVC. The effect of the amount of initiator for the radical graft polymerization on the composition of grafted polymer is given in Fig. 3. The content of PBMA grafted onto PVDC/PVC increased with an increase in the amount of $\text{Mo}(\text{CO})_6$. The relationship between the composition ratio and amount of $\text{Mo}(\text{CO})_6$ was not linear. The composition ratio will be asymptotic at higher $\text{Mo}(\text{CO})_6$ concentrations. This might be due to the fixed BMA concentration in the present study.

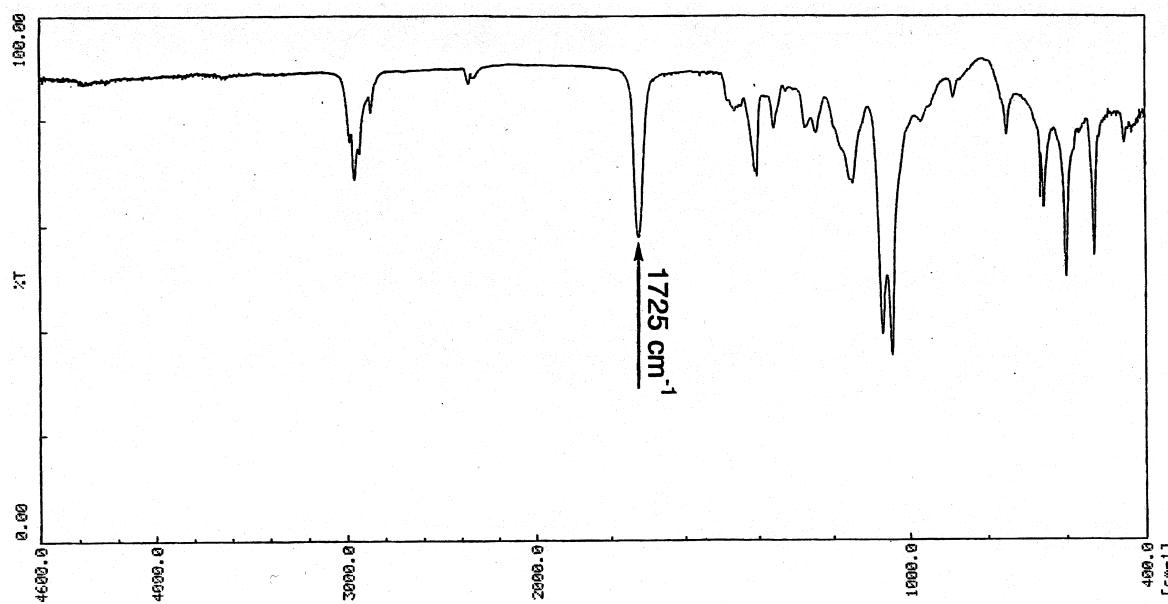


FIG. 1 IR spectrum of PVDCBMA-200. $[(\text{PBMA})/(\text{PVDC/PVC}) = 0.200]$.

FIG. 2 ^1H -NMR spectrum of THF- d_8 solution of PVDCBMA-200. $[(\text{PBMA})/(\text{PVDC/PVC}) = 0.200.]$

TABLE 1
Preparation and Characterization of PVDC/PVC-*graft*-PBMA

Sample	Charged amounts				PVDC/PVD- <i>graft</i> -PBMA	
	PVDC/ PVC/g	BMA/g	Mo(CO) ₆ /g	(Mo(CO) ₆)/ (PVDC/PVC) ^a	Yield/g	(PBMA)/ (PVDC/PVC) ^b
PVDCBMA-098 ^c	4.00	1.24×10	1.15×10^{-3}	1.00×10^{-4}	2.85	0.098
PVDCBMA-155 ^c	4.00	1.23×10	1.73×10^{-3}	1.51×10^{-4}	2.72	0.155
PVDCBMA-200 ^c	4.00	1.24×10	2.30×10^{-3}	2.00×10^{-4}	2.68	0.200
PVDCBMA-614 ^d	4.00	1.24×10	1.20×10^{-2}	1.00×10^{-3}	1.45	0.614
PVDCBMA-750 ^d	4.00	1.23×10	2.30×10^{-2}	2.00×10^{-3}	1.69	0.750

^a Ratio for mole of reacted Mo(CO)₆ to unit mole of reacted PVDC/PVC.

^b Ratio for unit mole of PBMA grafted to unit mole of PVDC/PVC.

^c Graft polymerization was carried out at 80°C for 24 hours in 90 cm³ of benzene.

^d Graft polymerization was carried out at 80°C for 24 hours in 90 cm³ of hexane.

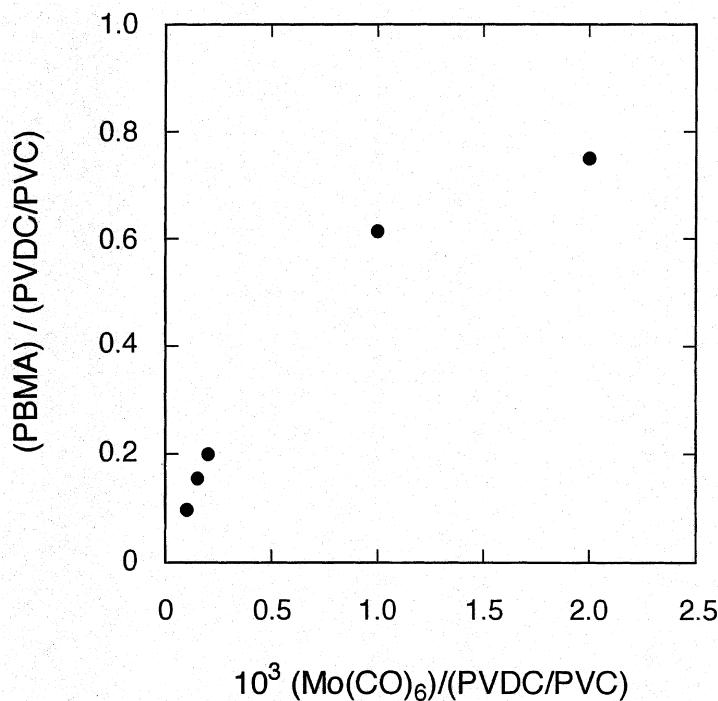


FIG. 3 Relationship between composition of PVDC/PVC-*graft*-PBMA and graft polymerization condition. (Graft polymerization was carried out at 80°C.)

Pervaporation of Benzene/Cyclohexane through PVDCBMA Membranes

Table 2 summarizes the effect of PBMA content on pervaporation of benzene/cyclohexane mixture, where the weight fraction of benzene in the feed was fixed to be around 0.5. The result for the unmodified membrane is also given in the table. In the radical graft polymerization it was difficult to obtain a membrane material with a low PBMA content. The results in Table 2 are also shown visually in Fig. 4. The membrane performance depends on PBMA

TABLE 2
Pervaporation of Benzene/Cyclohexane Mixture through PVDC/PVC-*graft*-PBMA Membranes^a

Membrane	(PBMA)/(PVDC/PVC)	Thickness/μm	X_{benzene}^b	Y_{benzene}^b	α^c	$J/\text{g}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$
PVDC/PVC	0	44	0.0991	0.3960	6.0	9.2
PVDCBMA-098	0.098	39	0.0992	0.4485	7.4	4.8
PVDCBMA-155	0.155	38	0.0996	0.3920	5.8	6.9
PVDCBMA-200	0.200	49	0.0992	0.3740	5.4	14.0
PVDCBMA-614	0.614	38	0.0991	0.3240	4.4	33.1
PVDCBMA-750	0.750	40	0.0995	0.2211	2.6	80.3

^a Pervaporation was carried out at 50°C; downstream pressure, ~267 Pa (2 mmHg).

^b Weight fraction of benzene.

^c $\alpha = (Y_{\text{benzene}}/Y_{\text{cyclohexane}})/(X_{\text{benzene}}/X_{\text{cyclohexane}})$.

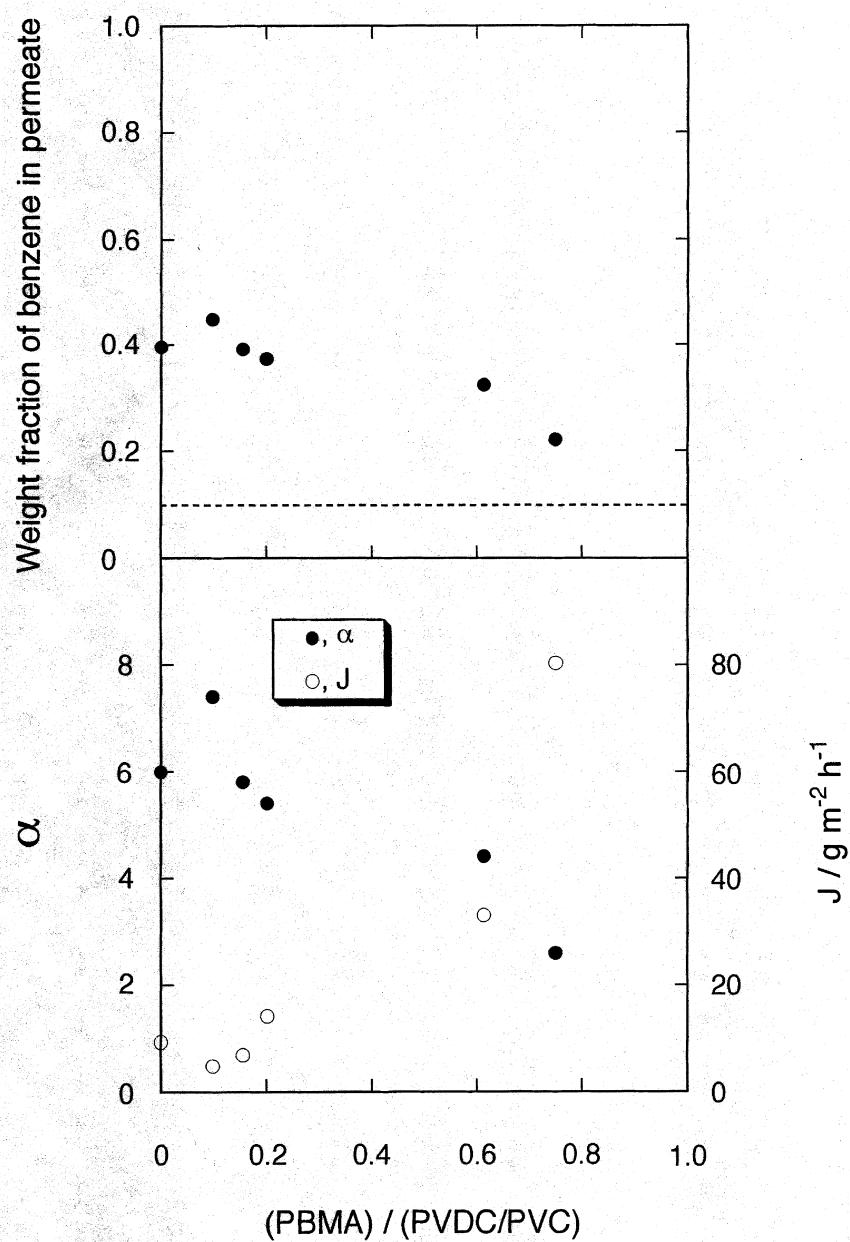


FIG. 4 Effect of composition of PVDC/PVC-*graft*-PBMA on pervaporation of benzene/cyclohexane mixture. [Weight fraction of benzene in feed, ca. 0.1; operating temperature, 50°C; downstream pressure, ca. 267 Pa (2.0 mmHg).]

content, and maximum permselectivity is shown at a (PBMA)/(PVDC/PVC) ratio of 0.098. As reported in the pervaporation of benzene/cyclohexane mixture through poly(vinylidene fluoride) membrane containing 3-methylsulfolene (14), the flux value increased with an increase in the PBMA content in the membrane, while the selectivity toward benzene decreased when the (PBMA)/(PVDC/PVC) ratio exceeded 0.098. Permselectivity toward benzene was still maintained at a (PBMA)/(PVDC/PVC) ratio of 0.750, which is the highest graft ratio in the present study. This is due to the introduction of PBMA onto PVDC/PVC; that is, the introduction of PBMA, which shows affinity toward benzene, onto PVDC/PVC increased the permselectivity toward benzene, while the introduction of PBMA simultaneously led to swelling of the membrane when the membrane was in contact with the feed mixture. As a result, the permselectivity decreased with an increase in PBMA content as shown in Fig. 4.

The dependence of feed composition on pervaporation performance for modified PVDC/PVC and unmodified PVDC/PVC membranes was studied and is summarized in Table 3. PVDCBMA-200 membrane was adopted as a modified PVDC/PVC membrane. Figure 5 shows the results from Table 3 of pervaporation of the benzene/cyclohexane mixture through the PVDCBMA-200 membrane, and those of PVDC/PVC are given in Fig. 6 where the membrane performance is plotted against the weight fraction of benzene in the

TABLE 3
Pervaporation of Benzene/Cyclohexane Mixtures through PVDC/PVDC-*graft*-PBMA
(PVDCBMA-200) Membrane^a

(PBMA)/(PVC) ^b	X_{benzene}^c	Y_{benzene}^c	α^d	$\text{J/g}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$
0.200 ^e	0.0992	0.3740	5.4	14.0
0.200 ^e	0.2983	0.6073	3.6	39.3
0.200 ^e	0.4994	0.7212	2.6	86.1
0.200 ^e	0.7002	0.8159	1.9	131.8
0.200 ^e	0.9009	0.9324	1.5	165.3
0 ^f	0.0991	0.3960	6.0	9.2
0 ^f	0.2993	0.6715	4.8	22.2
0 ^f	0.5004	0.7846	3.6	47.2
0 ^f	0.7004	0.8857	3.3	37.3
0 ^f	0.9013	0.9646	3.0	52.6

^a Pervaporation was carried out at 50°C; downstream pressure, ~267 Pa (2 mmHg).

^b Ratio for unit mole of PBMA grafted to unit mole of PVDC/PVC.

^c Weight fraction of benzene.

^d $\alpha = (Y_{\text{benzene}}/Y_{\text{cyclohexane}})/(X_{\text{benzene}}/X_{\text{cyclohexane}})$.

^e PVDCBMA-200 membrane; membrane thickness, 49 μm .

^f PVDC/PVC membrane; membrane thickness, 44 μm .

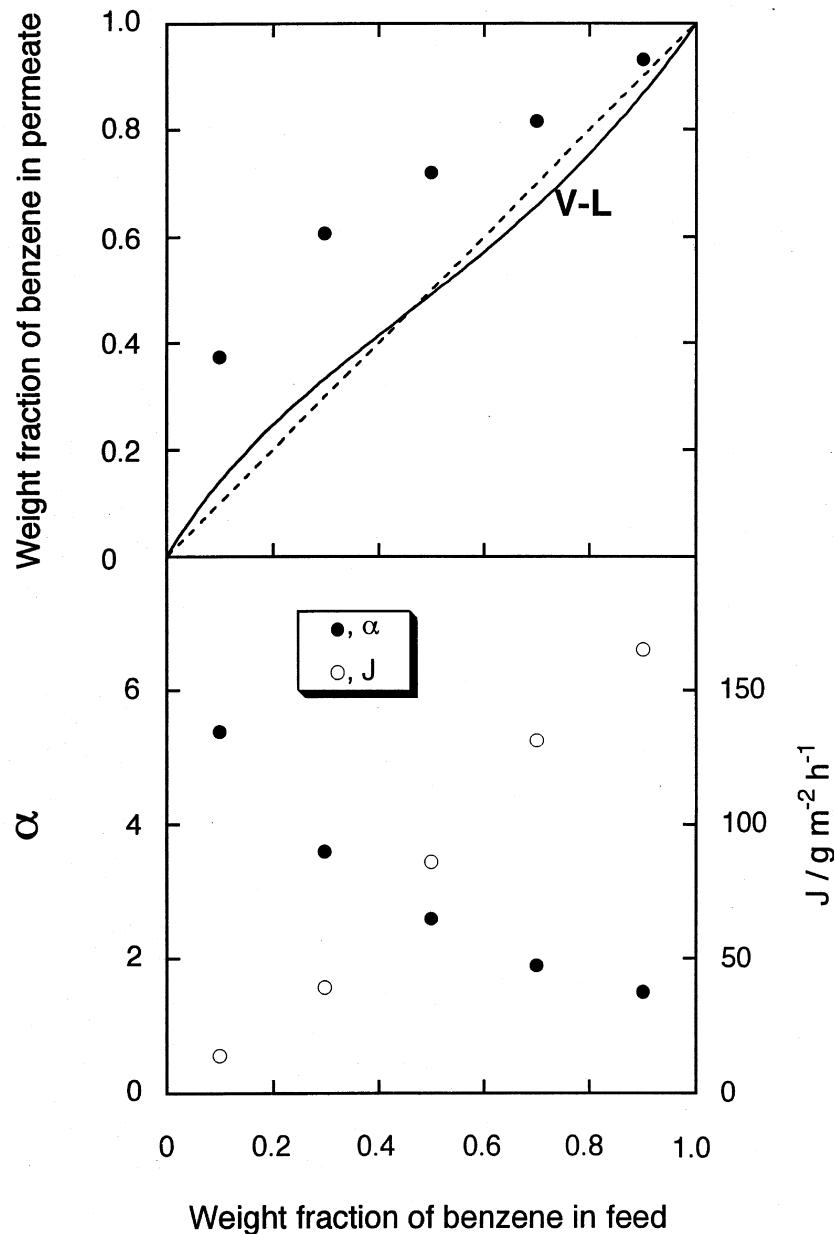


FIG. 5 Effect of feed composition on pervaporation, separation factor (α), and flux (J) of benzene/cyclohexane mixtures through PVDC/PVC-*graft*-PBMA (PVDCBMA-200) membrane. [(PBMA)/(PVDC/PVC) = 0.200; operating temperature, 50°C; downstream pressure, ca. 267 Pa (2.0 mmHg).]

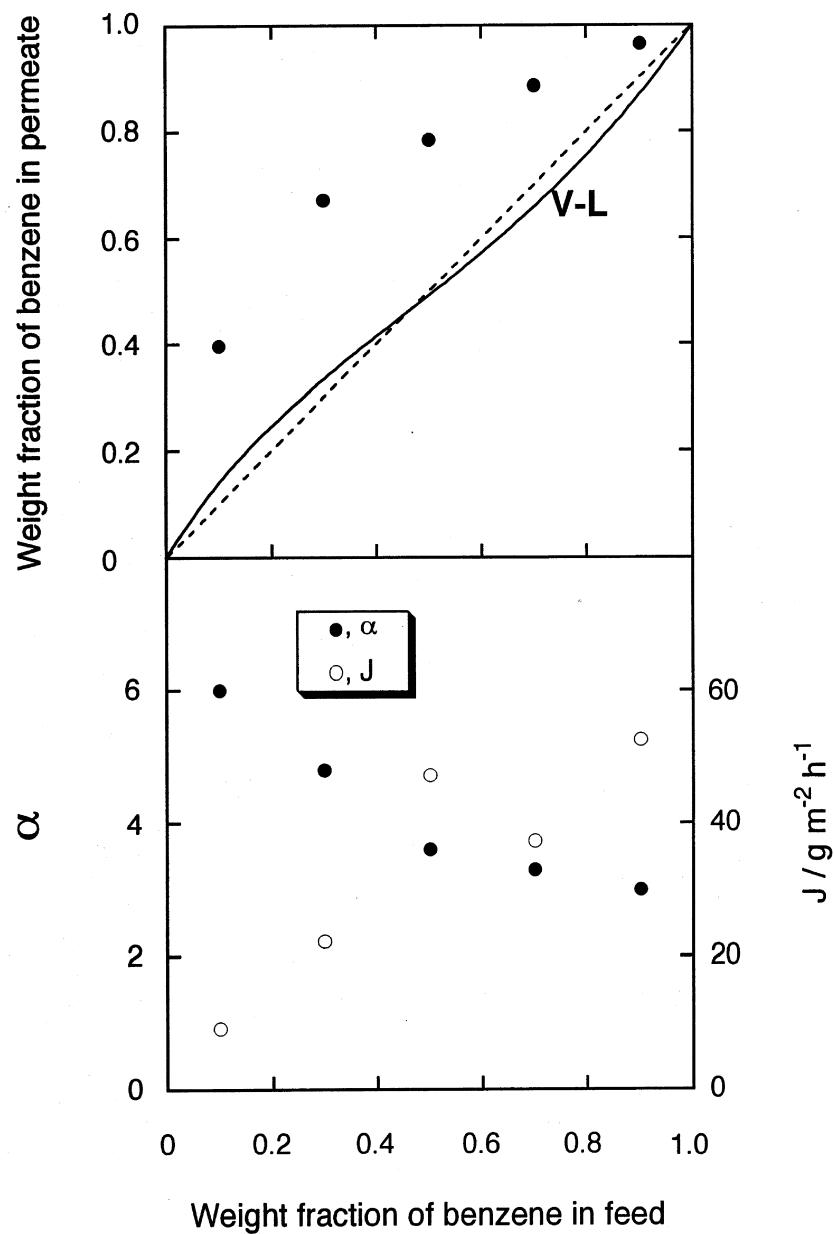


FIG. 6 Effect of feed composition on pervaporation, separation factor (α), and flux (J) of benzene/cyclohexane mixtures through PVDC/PVC membrane. [Operating temperature, 50°C; downstream pressure, ca. 267 Pa (2.0 mmHg).]

feed. Both membranes gave a similar performance. The vapor-liquid equilibrium curve for benzene-cyclohexane mixtures at 50°C (15) is also given in these two figures. As expected from the results shown in Table 2 and Fig. 4, the PVDC/PVC membrane gave slightly higher permselectivity toward benzene in whole feed range than did the PVDCBMA-200 membrane. Even in pervaporation with PVDCBMA-200 membrane, the weight fraction of benzene in the permeate was higher than the vapor-liquid equilibrium throughout the whole feed composition. The modified PVDC/PVC membrane gave higher flux values than the PVDC/PVC membrane.

Sorption

The results of sorption of benzene/cyclohexane mixture in PVDCBMA-200 and PVDC/PVC membranes are summarized in Table 4. These results are shown visually in Figs. 7 and 8, respectively. PVDC/PVC membrane showed a slightly higher affinity toward benzene than the modified PVDC/PVC one in the whole solution composition range. This can be explained by the fact that PBMA, which can be swollen by one component of the solution, benzene, was contained in the PVDCBMA-200 membrane.

Using the sorption data, solubility selectivity, S_S , can be obtained. According to the solution-diffusion theory, diffusivity selectivity, S_D (=

TABLE 4
Sorption of Benzene/Cyclohexane Mixtures in PVDC/PVC-*graft*-PBMA (PVDCBMA-200) and
PVDC/PVC Membranes at 50°C

(PBMA)/(PVDC) ^a	X_{benzene}^b	Z_{benzene}^b	Sorbed benzene g/g-membrane	Sorbed cyclohexane g/g-membrane	S_S^c	S_D^d
0.200 ^e	0.0972	0.1570	0.021	0.110	1.7	3.2
0.200 ^e	0.2910	0.3935	0.068	0.102	1.6	2.3
0.200 ^e	0.4988	0.5938	0.099	0.068	1.5	1.7
0.200 ^e	0.6988	0.7820	0.163	0.046	1.5	1.3
0.200 ^e	0.9012	0.9313	0.209	0.015	1.5	1.0
0 ^f	0.0967	0.1692	0.022	0.107	1.9	3.2
0 ^f	0.2940	0.4198	0.056	0.077	1.7	2.8
0 ^f	0.4991	0.6343	0.084	0.049	1.7	2.1
0 ^f	0.6964	0.7981	0.133	0.034	1.7	1.9
0 ^f	0.9010	0.9525	0.160	0.008	2.2	1.4

^a Ratio for unit mole of PBMA grafted to that of PVDC/PVC.

^b Weight fraction of benzene.

^c $S_S = (Z_{\text{benzene}}/Z_{\text{cyclohexane}})/(X_{\text{benzene}}/X_{\text{cyclohexane}})$.

^d $S_D = \alpha/S_S$.

^e PVDCBMA-200 membrane.

^f PVDC/PVC membrane.

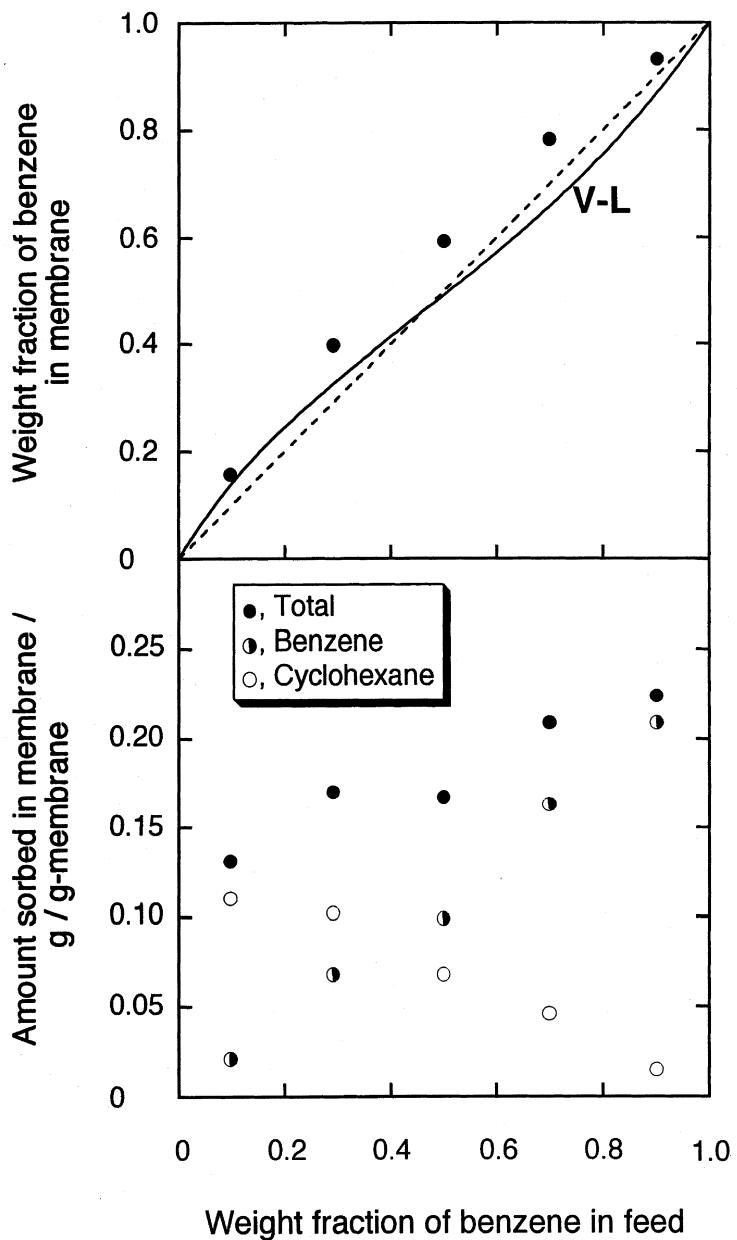


FIG. 7 Effect of feed composition on the composition of solution sorbed in membrane and on total and individual sorptions for PVDC/PVC-graft-PBMA (PVDCBMA-200) membrane at 50°C. [(PBMA)/(PVDC/PVC) = 0.200.]

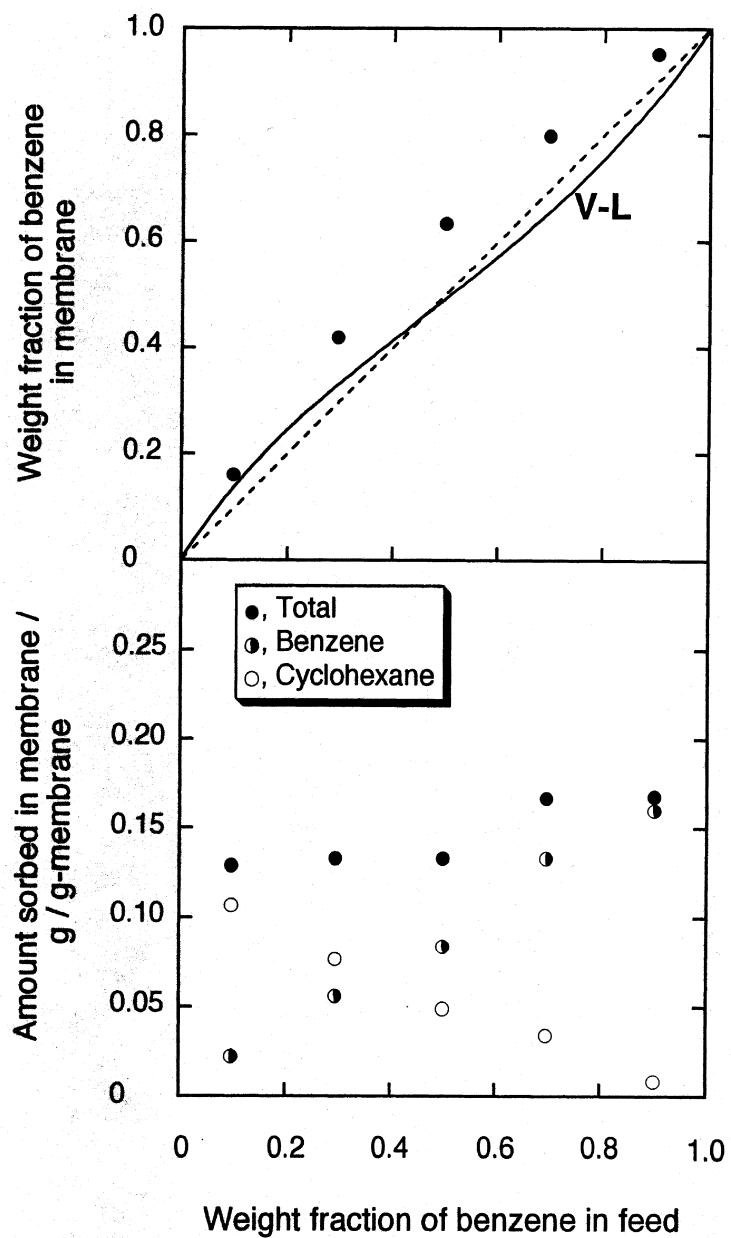


FIG. 8 Effect of feed composition on the composition of solution sorbed in membrane and on total and individual sorptions for PVDC/PVC membrane at 50°C.

$D_{\text{benzene}}/D_{\text{cyclohexane}}$; D_{benzene} and $D_{\text{cyclohexane}}$ are the diffusion coefficients of benzene and cyclohexane, respectively), can be estimated from the separation factor, α , and the solubility selectivity, S_S ($= S_{\text{benzene}}/S_{\text{cyclohexane}}$; S_{benzene} and $S_{\text{cyclohexane}}$ are the solubility coefficients of benzene and cyclohexane, respectively), thus obtained (16). Separation factor, solubility selectivity, and diffusivity selectivity for PVDCBMA-200 and PVDC/PVC membranes are shown in Fig. 9 as a function of the weight fraction of benzene in the feed. Both membranes gave not only benzene solubility selectivity but also benzene diffusivity selectivity. As a result, both membranes showed permselectivity toward benzene in the whole feed composition range.

CONCLUSIONS

From the present study, the following conclusions can be drawn:

1. Poly(vinylidene chloride-*co*-vinyl chloride)-*graft*-poly(butyl methacrylate) and poly(vinylidene chloride-*co*-vinyl chloride) membranes perme-

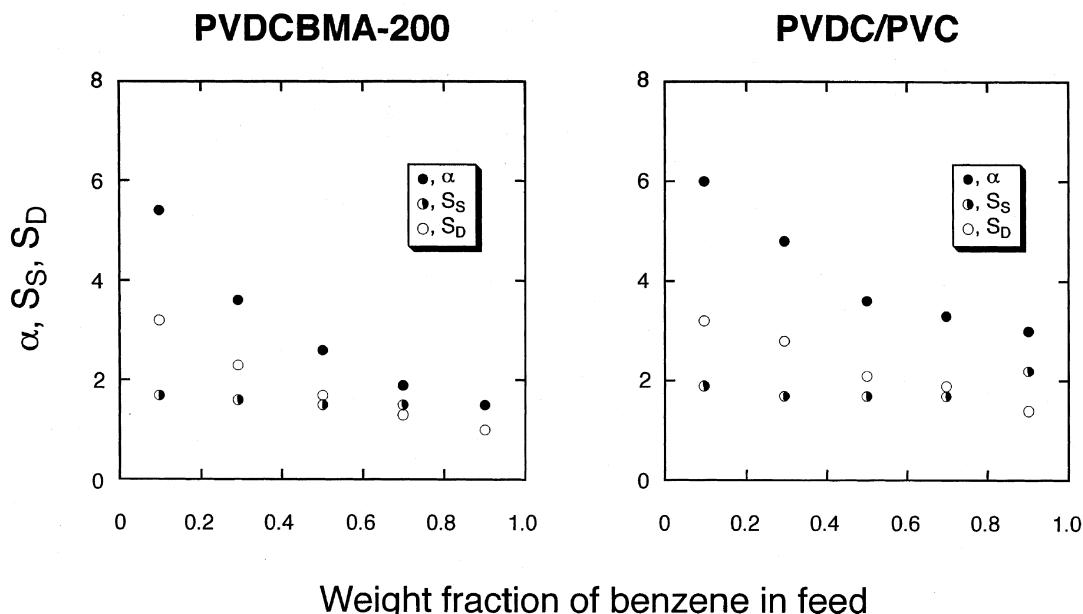


FIG. 9 Effect of feed composition on separation factor (α), solubility selectivity (S_S), and diffusivity selectivity (S_D) of PVDC/PVC and PVDC/PVC-*graft*-PBMA (PVDCBMA-200) [(PBMA)/(PVDC/PVC) = 0.200] membranes. [Operating temperature, 50°C; downstream pressure, ca. 267 Pa (2.0 mmHg).]

ated benzene in preference to cyclohexane from benzene/cyclohexane mixtures.

2. Introduction of poly(butyl methacrylate) onto poly(vinylidene chloride-*co*-vinyl chloride) by radical graft polymerization led to about a threefold augmentation in the flux values in comparison with unmodified membranes.
3. Poly(vinylidene chloride-*co*-vinyl chloride)-*graft*-poly(butyl methacrylate) and poly(vinylidene chloride-*co*-vinyl chloride) membranes have potential for application in petroleum refining processes.

ACKNOWLEDGMENT

Part of this work has been conducted with the support of the Petroleum Energy Center (PEC) subsidized by the Ministry of International Trade and Industry.

REFERENCES

1. M. Kucharski and J. Stelmaszek, "Separation of Liquid Mixtures by Permeation," *Int. Chem. Eng.*, 7, 618 (1967).
2. M. Yoshikawa and K. Tsubouchi, "Specialty Polymeric Membranes. 9. Separation of Benzene/Cyclohexane Mixtures through Poly(Vinyl Chloride)-*graft*-Poly(Butyl Methacrylate)," *J. Membr. Sci.*, 158, 269 (1999) and Refs. 2-26 therein.
3. M. Yoshikawa and T. Kitao, "Speciality Polymeric Membranes. VI. Pervaporation Separation of Benzene/Cyclohexane Mixtures through Nylon 6-*graft*-Poly(Ethyl Methacrylate) Membranes," *Eur. Polym. J.*, 33, 25 (1997).
4. M. Yoshikawa, S. Takeuchi, and T. Kitao, "Specialty Polymeric Membranes. 7. Pervaporation Separation of Benzene/Cyclohexane Mixtures with Nylon 6-*graft*-Poly(Oxyethylene) Membranes," *Angew. Makromol. Chem.*, 245, 193 (1997).
5. M. Yoshikawa and K. Tsubouchi, "Specialty Polymeric Membranes. VIII. Separation of Benzene from Benzene/Cyclohexane Mixtures with Nylon 6-*graft*-Poly(Butyl Methacrylate) Membranes," *Sep. Sci. Technol.*, 34, 403 (1999).
6. M. Yoshikawa, T. Motoi, and K. Tsubouchi, "Specialty Polymeric Membranes. 11. Pervaporation of Benzene/Cyclohexane Mixtures through Poly(Vinyl Alcohol)-*graft*-Poly(Acrylic Acid) Membranes," *J. Macromol. Sci.—Pure Appl. Chem.*, A36, 621 (1999).
7. C. H. Bamford, G. C. Eastmond, and V. J. Robinson, "Mechanism of the Initiation of Polymerization by Metal Carbonyl-Halide Systems," *Trans. Faraday Soc.*, 60, 751 (1964).
8. C. H. Bamford, R. W. Dyson, and G. C. Eastmond, "Studies in Network Formation," *J. Polym. Sci.: Part C*, 16, 2425 (1967).
9. H. Alper and C. C. Huang, "The Group VI Metal Carbonyl Catalyzed Reaction of Ethers and Acid Halides," *J. Org. Chem.*, 38, 65 (1973).
10. D. D. Perrin, W. L. F. Armarego, and D. R. Perrin, *Purification of Laboratory Chemicals*, 2nd ed., Pergamon Press, Oxford, 1980.
11. J. A. Riddick, W. B. Bunger, and T. K. Sakano, *Organic Solvents*, 4th ed., Wiley, New York, NY, 1986.
12. S. Yamada, "Evaluation of Pervaporation Membrane for Separation of Liquid-Liquid Mixture," *Maku (Membrane)*, 6, 168 (1981).

13. M. Yoshikawa, T. Wano, and T. Kitao, "Specialty Polymeric Membranes, 2. Pervaporation Separation of Aqueous Lower Alcohol Solutions through Modified Polybutadiene Membranes," *J. Membr. Sci.*, **89**, 23 (1994).
14. F. P. McCandless, "Separation of Aromatics and Naphthenes by Permeation through Modified Vinylidene Fluoride Films, *Ind. Eng. Chem., Process Des. Dev.* **12**, 354 (1973).
15. J. Gmehling, U. Onken, and W. Arlt, in D. Benrens and R. Eckermann (Eds.), *Vapor-Liquid Equilibrium Data Collection, Vol. I, Part 6a*, DECHEMA, Frankfurt, 1980.
16. C. H. Lee, "Theory of Reverse Osmosis and Some Other Membrane Permeation Operations," *J. Appl. Polym. Sci.*, **19**, 83 (1975).

Received by editor August 30, 1999

Revision received January 2000

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Reprints Here" link below and follow the instructions. Visit the [U.S. Copyright Office](#) for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on [Fair Use in the Classroom](#).

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our [Website User Agreement](#) for more details.

Order now!

Reprints of this article can also be ordered at
<http://www.dekker.com/servlet/product/DOI/101081SS100100623>